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Abstract: Work Package one (WP1) of the EU-funded project CONFIDENCE (COping with 
uNcertainties For Improved modelling and DEcision making in Nuclear emergenCiEs) is dedicated to 
uncertainties during the early phase of a radiological accident. More specifically, it consists of 
propagating input uncertainties through atmospheric dispersion models to generate a results ensemble in 
which radiological endpoints can be analysed, for example by threshold exceedance of dose reference 
levels. 

The first step of any uncertainty propagation study consists of identifying and quantifying input 
uncertainties. Meteorological data (e.g. wind, rain fields’ forecasts) and source term (i.e. released rate of 
radionuclides as a function of time) are the key uncertainties during a nuclear crisis. The former was dealt 
with by using meteorological ensembles. For the latter, several scenarios were designed, from the most 
simple (a short release with crude perturbations on quantities, height and beginning time) to an ensemble 
of source terms, designed with the severe accident code ASTEC, including uncertainties. Finally, a 
significant literature review was undertaken to identify and characterise uncertainties linked to atmospheric 
dispersion models. Guidelines for ranking uncertainties in atmospheric dispersion were produced (Mathieu 
et al. 2017).  

The second step was an uncertainty propagation exercise through atmospheric dispersion and radiological 
models, for both historical events and hypothetical scenarios. During this stage, participants from eight 
countries (Denmark, France, Germany, Greece, Hungary, the Netherlands, Norway and the UK) used the 



meteorological ensembles and release scenarios to propagate the uncertainties through their operational 
tools (Korsakissok et al. 2019). The level of uncertainties taken into account depends on the participant; 
some only propagated the meteorological ensemble, others used Monte Carlo methods to take into account 
all the identified uncertainties. 

This exercise led to a tremendous amount of data: fields of atmospheric concentrations and deposition as a 
function of time, and associated doses, for a large number of simulations. Some lessons learnt relate to 
dealing with high-dimensional inputs (meteorological ensembles, source terms) and outputs, from very 
practical issues to more theoretical ones. This abstract aims at presenting a synthesis of the exercise, with 
a focus on issues related to the analysis and visualization of uncertainties, including statistical and graphical 
indicators to compare ensemble results. 
 
INTRODUCTION  
One of the aims of the CONFIDENCE project is to understand, reduce and cope with the uncertainty of 
meteorological and radiological data and their further propagation in decision support systems, including 
atmospheric dispersion, dose estimation, food-chain modelling and countermeasure simulation models. 
Work package 1 (WP1) is focused on modelling uncertainties during the emergency phase, from 
meteorological and source term inputs, and applied to atmospheric dispersion and dose estimates. This 
abstract presents the ensemble dispersion simulations performed by WP1 participants for a hypothetical 
accident scenario at Borssele nuclear power plant (Netherlands).   
The first part summarizes very briefly the release scenario and the meteorological conditions considered. 
Then, the second part presents the results with the short release and 10 meteorological members, with and 
without additional perturbations on the source term and/or physical parameters.  

THE BORSSELE CASE STUDY 
The Borssele nuclear power plant (NPP) is located at a latitude and longitude of 51.43 and 3.71 decimal 
degrees, respectively (cf. Figure 1). 

Release scenarios and associated uncertainties 
In WP1 of CONFIDENCE the Borssele case is studied, for which two release scenarios are defined. Here, 
we show the “short release” which has a duration of 4 hours. This is based on an accident which is 
anticipated to start in 24 hours with +/- 6 hours uncertainties on the release start. The Borssele NPP was 
scaled to a 900MWe reactor. The effective release height is 50 meters, with an uncertainty of 50 meters. 
Finally, the released quantities are given in Table 1, with an uncertainty factor of 1/3 to 3. The particulate 
diameter is 1µm and the iodine partitioning is 1/3 particulate, 2/3 elemental.  
 
Table 1: released quantities for the short release scenario, for the 8 selected radionuclides (Bq). 

Radionuclide Xe-133 I-131 I-132 Te-132 Cs-134 Cs-136 Cs-137 Ba-137m 
Activity(Bq) 3.51E18 2.25E16 2.84E16 1.37E16 2.69E15 6.37E14 2.06E15 2.78E14 

Meteorology 
The meteorology for the Borssele case study was provided by KNMI. The Harmonie-AROME model was 
used, with a horizontal resolution of about 2.5 km and a temporal resolution of one hour. The time-span of 
the data is 72 hours. The domain provided was 300 km x 300 km. The selected scenario applies to a release 
on 11 Jan 2017. It was labelled “easy case”, since the wind direction is well established (Figure 1). Rain 
adds uncertainty to the scenario (depending on the release time, the plume may or may not be scavenged 
by rain) and higher consequences as far as deposition is concerned. KNMI constructed a Harmonie-
AROME ensemble from 2 different versions of the meteorological model, with different turbulence 
schemes, and combined successive deterministic forecasts to create a hybrid lagged ensemble.  The 
ensemble is a hybrid in the sense that two different model versions are used; and lagged in the sense that 
successive forecasts are used. Each model version was used to construct 5 ensemble members with a 
forecast length of 72 hours (Geertsema et al. 2019). 



 
Figure 1 : Indicative plume trajectories based on analysed weather as a function of height (between 10m and 

500m), for a release at 12 UTC 11/01/17, and associated rain (cumulated on one hour). 

Endpoints 
The outputs proposed here are maps of probability of threshold exceedance. Instead of a single contour 
showing the impacted area (based on a single deterministic simulation), the probability maps are based on 
an ensemble of simulations and correspond to the probability that a given zone is contaminated above a 
given level. Several levels were considered for Cs-137 deposition, for effective dose and inhalation thyroid 
dose for 1-year old child. In the following, the 37 kBq/m2 threshold for Cs-137 deposition is presented 
(post-Chernobyl reference level). All variables are computed 24 hours after the reference release date. The 
results were computed on the input meteorological grid, with 2.5 km resolution. Useful outputs for decision 
making are the maximum distance and surface area affected by the threshold exceedance.  

Modelling set-up 
 
Table 1 : source perturbations used with the 10 meteorological members by each participant. Only IRSN used 
a Monte Carlo sampling, adding other uncertainties on diffusion and deposition coefficients. 

Participant Number of 
simulations 

Source perturbations 
Release height Release time Released quantity 

IRSN  100 (Monte Carlo) [0, 100m] uniform [-6h, 6h] uniform [1/3, 3] uniform 
BfS 150 [0m, 50m, 100m] T0 + [-6h, -3h, 0h, +3h, +6h]  
MetOffice/ 
PHE 

90 
[50m]  T0 + [-6h, 0h, +6h] [x1/3, x1, x3]   

EEAE 50 [50m]  T0 + [-6h, -3h, 0h, +3h, +6h]  
MTA EK 150 [0m, 50m, 100m]    T0 + [-6h, -3h, 0h, +3h, +6h]  

RIVM 
650 

[0m, 25m, 50m, 75m, 100m]    
[-6h, +6h] with a time step of 1 

hour (13 steps) 
 

DTU 10 - - - 
The ensemble results from seven participating countries have been processed. Different types of 
atmospheric dispersion models were used: there is one Eulerian model, two Lagrangian particle models, 
and four Gaussian puff models. In addition, all models had different set-ups and physical parameterizations 
concerning the values of deposition velocities and scavenging coefficients.  
The perturbations associated with the source term are listed in Table 1. All participants carried out “cross” 
simulations, that is, the number of simulations is equal to [number of source terms] X [number of 
meteorological members], except IRSN, who did Monte Carlo simulations and added perturbations of 
deposition and diffusion parameters, as recommended in (Mathieu et al. 2017). 



RESULTS WITH THE SHORT RELEASE 

Distance above a given threshold 

  
Figure 2 : Box plots for the maximum distance (in km from the source) of threshold exceedance of 37 kBq/m2 
for Cs-137 deposition: with the unperturbed source term and 10 meteorological members (left) and with the 
perturbations given in Table 1 (right).  

Figure 2 shows the box plots for the maximum distance above the 37 kBq/m2 threshold for Cs-137 
deposition. The red line is the median over the ensemble, the box gives the limits of 25 and 75 percentiles. 
In the left figure, only 10 simulations per participant are considered, representing the meteorological 
uncertainties without any source term perturbation. Most participants’ ensembles have a small spread, 
which is consistent with the small variability of the meteorological scenario (cf. Figure 1). Consequently, 
the inter-participant variability is quite large in comparison. This variability comes from the different model 
types and wet deposition schemes (the maximum distance is particularly sensitive to the wet deposition 
scheme since the threshold is exceeded in patches of wet deposition).  
 
The variability between the estimated uncertainties using all simulations (i.e. the boxes’ sizes) is highly 
influenced by the source term perturbations applied (Figure 2, right). For instance, the DTU ensemble’s 
spread remains small due to the lack of source term perturbation. For most ensembles, the ensemble 
variability is very large and the variations between the participants may be encompassed within the overall 
uncertainties.  
It should be noted that the maximum distance may be influenced by a few spots of contamination far from 
the main contamination area, which may appear in the case of rain. The surface above threshold may be 
more reliable (not shown). In addition, taking into account physical model uncertainties by perturbing 
diffusion and deposition coefficients, as done by IRSN, does not seem to lead to a higher ensemble’s spread 
than the other participants’, which hints that they are of a second order compared to source term and 
meteorology.  
 
Figure 3 shows the maps of probability of threshold exceedance for the 37 kBq/m2 threshold of Cs-137 
deposition for one participant. It illustrates again that the variability (i.e. ensemble’s spread) is much smaller 
when only the meteorological uncertainties are considered (right) than when the source term perturbations 
are added (left). By adding more variability, the average distance of threshold exceedance is lower. Indeed, 
by perturbing the release time, some simulations result in a change in the main plume direction, which 
results in a smaller proportion of simulations above a given threshold in a particular cell. Taking into 
account more uncertainties thus results in smaller average distances; on the other hand, the surface 
potentially impacted by the plume, that is, above a low threshold (e.g. 5%) is higher. This illustrates that 
such outputs and indicators have to be handled carefully to avoid misinterpretations.   



  
Figure 3: Maps of probability of exceeding the threshold of 37 kBq/m2 of Cs-137 deposition with the 
unperturbed source term and 10 meteorological members (left) and with the perturbations given in Table 1 
(right). The maximum distance of threshold exceedance is also given (mean over the ensemble, minimum and 
maximum values). The results shown here are from UK MetOffice. 
 

CONCLUSIONS 
We have illustrated the inter-model variability, compared to the uncertainty associated to meteorology and 
source term. In this scenario, the meteorological variability is small. A new inter-comparison is ongoing on 
another Borssele meteorological situation with a larger wind direction and rain variability. We have 
illustrated the importance of taking into account the source term uncertainties. The importance of the chosen 
output variable, threshold and percentile are also highlighted. In particular, for decision making, 
“probability maps” should be associated with examples of outputs such as “worst case” or “likely case”.  
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